
Fault Localization via Efficient Probabilistic Modeling of
Program Semantics

Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, Lu Zhang
Key Laboratory of High Confidence Software Technologies, Ministry of Education (Peking University)

School of Computer Science, Peking University
Beijing, PR China

{mhzeng,wuyiqian,ztye,xiongyf,xin,zhanglucs}@pku.edu.cn

ABSTRACT
Testing-based fault localization has been a significant topic in soft-
ware engineering in the past decades. It localizes a faulty program
element based on a set of passing and failing test executions. Since
whether a fault could be triggered and detected by a test is related
to program semantics, it is crucial to model program semantics
in fault localization approaches. Existing approaches either con-
sider the full semantics of the program (e.g., mutation-based fault
localization and angelic debugging), leading to scalability issues,
or ignore the semantics of the program (e.g., spectrum-based fault
localization), leading to imprecise localization results. Our key idea
is: by modeling only the correctness of program values but not
their full semantics, a balance could be reached between effective-
ness and scalability. To realize this idea, we introduce a probabilis-
tic approach to model program semantics and utilize information
from static analysis and dynamic execution traces in our model-
ing. Our approach, SmartFL (SeMantics bAsed pRobabilisTic Fault
Localization), is evaluated on a real-world dataset, Defects4J. The
top-1 statement-level accuracy of our approach is 21%, which is
the best among state-of-the-art methods. The average time cost
is 210 seconds per fault while existing methods that capture full
semantics are often 10x or more slower.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
fault localization, semantics, probabilistic modeling
ACM Reference Format:
Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, Lu Zhang.
2022. Fault Localization via Efficient Probabilistic Modeling of Program Se-
mantics. In 44th International Conference on Software Engineering (ICSE ’22),
May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3510003.3510073

Yingfei Xiong is the corresponding Author. Muhan Zeng and Yiqian Wu are equal
contributors to the paper and their names are sorted alphabetically.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510073

1 INTRODUCTION
In the last two decades, testing-based fault localization, or fault
localization in short, has been a research focus in software engi-
neering [2, 11, 23, 33, 38]. Given a program and a set of tests with
at least one failing test, a fault localization approach computes the
suspiciousness score of each program element to determine which
one is the most suspicious to be faulty. Here the program elements
can be statements, methods, files, or at any needed granularity.

Among the large body of fault localization research, a central
focus is coverage-based fault localization. Coverage-based fault
localization infers the suspiciousness scores of program elements
based on the coverage information, and the basic idea is that an
element covered more by failing tests rather than passing tests is
more likely to be faulty. For example, spectrum-based fault local-
ization (SBFL) [13], one of the most well-known fault localization
families, calculates the suspiciousness score of a program element
based on the number of passing tests and the number of failing
tests covering the element.

However, whether a buggy program element causes the failure of
a test is determined by four conditions [30, 32, 37]: (1) whether the
test covers the buggy program element, (2) whether the execution
of the buggy program element results in an error in the program
state, (3) whether the error in the program state is propagated to
the output and (4) whether the error in the output is captured by
an assertion or not. Coverage-based fault localization ignores the
semantics of the target program and thus only considers the first
condition. A test may cover a buggy program element but still
pass because the latter three conditions are not satisfied, leading to
inaccuracies in coverage-based fault localization.

To overcome this problem, different approaches have been pro-
posed to take the latter three conditions also into consideration.
For example, mutation-based fault localization (MBFL) [21, 23] gen-
erates many mutations on each element and watches whether the
program output or the test result (i.e., the pass/fail status) changes.
If a change in a statement is more likely to change the program
output or the test result in the failing tests, and less likely in the
passing tests, the statement is likely to be faulty. Angelic debug-
ging [6, 7] uses symbolic analysis to determine whether the result
of an expression can be modified to reverse the results of failing
tests while maintaining the results of the passing tests, and such an
expression is considered more likely to be faulty. However, these
approaches take the full program semantics into consideration, and
thus the analysis is inevitably heavy. As an existing study [38]
reveals, mutation-based fault localization often requires hours to
localize a single fault. As far as we are aware, there is so far no
successful application of angelic debugging to large programs.

https://doi.org/10.1145/3510003.3510073
https://doi.org/10.1145/3510003.3510073

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, Lu Zhang

In this paper, we propose a novel approach to fault localization,
SmartFL, that considers the four factors via efficient probabilistic
modeling of the program semantics. Our approach considers a
sample space of all possible faults and analyzes which program
element is more likely to be faulty based on current test results. Our
core insight is that the probability of a fault in the current program
element leads to the current test results can be efficiently estimated
by analyzing the following:

• the probability of each instruction in the traces of test exe-
cutions to introduce an error into the system state.

• the probability of each instruction to propagate an error.
In this way, we do not need to consider the full semantics and

can abstract each value into two possibilities: faulty or not. Conse-
quently, the analysis is significantly simplified and can be efficiently
approached. Along with this insight, we build a probabilistic model
based on the test execution traces and calculate the posterior prob-
abilities of whether a statement is faulty based on the test result.

However, realizing this idea still has two main challenges. The
first one is how to model the effect from the control statements. If
the result of a conditional expression is faulty, the executed state-
mentsmay have been changed and thus analyzing only the executed
instructions in the trace is insufficient. To overcome this challenge,
we statically analyze the impact of each conditional expression
and combine the static impact with the dynamically obtained trace.
The second one is scalability. Though our modeling is significantly
simpler than a model from the full semantics, the probabilistic
model may still be large as the test execution traces can be long.
To overcome this challenge, we have introduced methods to select
and compress traces and utilize an efficient probability inference
algorithm [16, 25].

We have evaluated our approach on the widely-used Defects4J
benchmark [15]. The results show that our approach significantly
outperforms MBFL, the representative approach that leverages full
program semantics, in terms of both efficiency (210s per fault avg.)
and effectiveness (21% Top-1 accuracy). Our approach is also com-
plementary to existing approaches: while combining our approach
with existing approaches using the CombineFL framework [38],
the performance of the combined approach is further significantly
boosted by 26(12%) on Top-1 accuracy.

In summary, this paper makes the following main contributions.
• A fault localization approach by efficient modeling of pro-
gram semantics

• Novel techniques for modeling the control statements and
for addressing scalability.

• An evaluation on the Defects4J dataset to show the effective-
ness and the efficiency of our approach.

The rest of the paper is organized as follows. Section 2 motivates
our approach with examples. Section 3 presents basic mathematical
background about factor graphs. Section 4 describes our approach
in detail, with an emphasis on how to build the probabilistic model.
Section 5 shows the experiment results and answers the research
questions. Section 6 discusses related research. Section 7 concludes
the paper.

2 OVERVIEW
In this section, we motivate our approach using an example.

1 public class CondTest {
2 public static int foo(int a) {
3 if (a <= 2) { // buggy , should be a < 2
4 a = a + 1;
5 }
6 return a;
7 }
8
9 @Test
10 void pass() {
11 assertEquals (2, foo(1));
12 }
13
14 @Test
15 void fail() {
16 assertEquals (2, foo(2));
17 }
18 }

Figure 1: A Motivating Example for Condition Modeling

Motivating Example. Figure 1 (a) is a simple program for illus-
tration purpose. The buggy condition a <= 2 at line 3 replaced
the correct condition a < 2. There are two test cases to find the
fault. For test pass, the fault does not influence the evaluation of
the condition so the result is correct. However, in test fail, the
fault misleads the test to the wrong branch and gets a wrong result.
Here we assume statement-level fault localization, and a desirable
approach should rank line 3 at the top.
Coverage-basedApproaches. Wefirst demonstratewhy coverage-
based approaches such as SBFL fail to discover this bug. Coverage-
based approaches utilize code coverage information to calculate sus-
piciousness scores. In SBFL approaches, the suspiciousness scores
of an element 𝑒 are calculated from four numbers: the number of
passing tests covering 𝑒 , the number of failing tests covering 𝑒 , the
total number of passing tests, and the total number of failing tests.
However, in the above case, the coverage of passing tests and fail-
ing tests are completely identical, resulting in equal suspiciousness
scores for every statement regardless of specific SBFL formulas.

As analyzed in the introduction, SBFL formulas cannot distin-
guish the suspicious degrees of different statements because cover-
age is only one out of the four conditions that lead to test failure.
In test pass, though the faulty expression is covered, the resulted
runtime state is still correct, and thus calculating suspiciousness
with only coverage cannot distinguish each statement.
Other Existing Approaches. To address the above challenge,
many existing approaches try to analyze also the latter three condi-
tions, i.e., whether the execution of a statement produces a faulty
state, whether the faulty state is propagated to the output, and
whether the test captures the fault in the state. However, to analyze
the three conditions precisely, we need to consider the full seman-
tics of the program, which is difficult to achieve efficiently. Here
we analyze two families of approaches.

A typical family is MBFL. MBFL mutates each statement to gen-
erate multiple mutants, and check whether the output of each
test execution [23] or the test result (i.e., the pass/fail status) [21]
changes. In this case, mutating the statement at line 4 or the state-
ment at line 6 has a high probability to fail test pass, while mutating
the statement at line 3 has a much smaller probability to fail test
pass. In this way, we know that the statement at line 3 has a weak

Fault Localization via Efficient Probabilistic Modeling of Program Semantics ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

correlation to the test result of pass and is more likely to be faulty.
However, to obtain statistically significant information, we need to
generate a number of mutants for each statement, and all tests need
to be executed on each mutant, which takes a significant amount
of time. In an existing empirical study [38], mutation-based fault
localization requires hours to localize a single fault.

Another example family is angelic debugging [6, 7]. Angelic
debugging analyzes, for each expression, whether its result can be
modified to reverse the results of failing tests while maintaining
the results of the passing tests. In this example, changing the result
of expression a+1 at line 4 or the result of expression a at line 6
to any value different from 2 would fail test pass, and thus the
two expressions are not considered to be buggy. However, such an
analysis requires symbolic reasoning, which is known to be heavy
and has limited scalability. So far there is no successful application
of angelic debugging to large programs within our knowledge.
Our Approach. Different from the above approaches, our ap-
proach takes a probabilistic view on fault localization. Let us con-
sider a sample space of all possible faults that the current program
could potentially contain. Given the current test results as an ob-
servation, our approach estimates the probability of each program
element being faulty. To efficiently estimate the probabilities, our
approach builds a probabilistic model based on the probability that
each statement produces and propagates faulty values.

Concretely, we introduce a set of Bernoulli random variables to
represent whether a statement is correct, denoted by 𝑆𝑖 , where 𝑖 is
the line number of the statement. We also introduce another set of
Bernoulli random variables to represent whether the output value of
an expression execution is correct. In this example, we use𝑉𝑝,𝑖 (𝑉𝑓 ,𝑖)
to denote the value produced by the expression execution at line 𝑖
in test pass (fail). Similarly,𝑉𝑝,2 and𝑉𝑓 ,2 denotes the correctness
of the test inputs and 𝑉𝑝,6 and 𝑉𝑓 ,6 denotes the correctness of the
test outputs.

Since the input values of the tests are correct, we have the fol-
lowing probabilities.

𝑃 (𝑉𝑝,2 = 1) = 𝑃 (𝑉𝑓 ,2 = 1) = 1

Please note that since the Bernoulli random variables are binary,
we also know 𝑃 (𝑉𝑝,2 = 0) = 𝑃 (𝑉𝑓 ,2 = 0) = 0. To ease presentation,
we will only present one of the two probabilities.

Since pass passes and fail fails, we have the following proba-
bilities.

𝑃 (𝑉𝑝,6 = 1) = 1 ∧ 𝑃 (𝑉𝑓 ,6 = 1) = 0

Now let us further consider the probabilities that the statements
produce and propagate the faulty values. First, we notice that if the
statement must be executed during the test execution, the statement
itself is correct, and the input values are all correct, the result must
be correct. Then we have the following conditional probability

𝑃 (𝑉𝑡,3 = 1 | 𝑆3 = 1 ∧𝑉𝑡,2 = 1) = 1
𝑃 (𝑉𝑡,6 = 1 | 𝑆6 = 1 ∧𝑉𝑡,4 = 1) = 1 where 𝑡 ∈ {𝑝, 𝑓 }

Then, we notice that whether the statement at line 4 should be
executed depends on the result of the expression at line 3. That
is, if the expression produces the correct result, the executions of
the statement at line 4 in the two tests are correct. Then we have
the following conditional probability by considering both data and

control dependencies.

𝑃 (𝑉𝑡,4 = 1 | 𝑆4 = 1 ∧𝑉𝑡,2 = 1 ∧𝑉𝑡,3 = 1) = 1 where 𝑡 ∈ {𝑝, 𝑓 }

Next, we consider the case where faulty values may be produced
or propagated. If an expression may produce a faulty result, any
of the three following conditions must hold: the expression itself
is wrong, the input of the expression is wrong, or the expression
should not be executed. To simplify our probabilities model, we
do not distinguish the three cases, and uniformly consider the
probability that an expression returns a faulty value when some
source is wrong.

We notice that different types of operations behave differently.
Some are very sensitive to the faults: when something goes wrong,
the result is highly likely to be wrong. In our example, a+1 is such
an operation. Some are insensitive to the faults: when something
goes wrong, the result could still be correct. In our example, a <=
2 is such an operation. As a result, we give a high probability to the
sensitive operations of returning a faulty value when something is
wrong and give a lower probability to the insensitive operations.
As a result, we have the following probabilities.

𝑃 (𝑉𝑡,3 = 0 | 𝑆3 = 0 ∨𝑉𝑡,2 = 0) = 0.5
𝑃 (𝑉𝑡,4 = 0 | 𝑆4 = 0 ∨𝑉𝑡,2 = 0 ∨𝑉𝑡,3 = 0) = 0.99
𝑃 (𝑉𝑡,6 = 0 | 𝑆6 = 0 ∨𝑉𝑡,4 = 0) = 0.99

where 𝑡 ∈ {𝑝, 𝑓 }

Based on the above probabilities, we build a factor graph [16]
using these probabilities as references. Factor graph is a probabilis-
tic graph modeling technique where constraints over the random
variables could be easily added. Finally, we use a probabilistic in-
ference algorithm named loopy belief propagation [25] to infer
𝑃 (𝑆𝑖 = 0) for each 𝑖 . These probabilities reflect the suspiciousness.
In this example, we would successfully infer 𝑃 (𝑆3 = 0) ≈ 0.707,
𝑃 (𝑆4 = 0) ≈ 0.270, and 𝑃 (𝑆6 = 0) ≈ 0.223. 𝑆3 has the highest
probability to be faulty, i.e, successfully localizing the fault.
Challenges. While the basic idea is straightforward, realizing this
idea needs to address multiple challenges. The first challenge is
modeling the effects of control statements. In Figure 2, the failing
test goes through the else branch, leaving line 5 unexecuted, and
thus fails the assertion. In this case, the value of a is incorrect, but
the current modeling cannot relate this fault to the conditional
expression at line 4 because a is not changed by any statement
during the test execution.

To overcome this problem, we need to model the effect of the
unexecuted branch: the value of 𝑎 could be faulty when the con-
dition is faulty. We perform static analysis to obtain the variables
changed by the unexecuted branch, i.e., a, and then add statement
a=a after line 7 (denoted as line 7.1), i.e., the end of the executed
branch. Then following the same procedure, we would obtain the
following conditional probability from the newly added statement:

𝑃 (𝑉𝑡,7.1 = 0 | 𝑆7.1 = 0∨𝑉𝑡,4 = 0∨𝑉𝑡,2 = 0) = 0.99 where 𝑡 ∈ {𝑝, 𝑓 }

In this way, the value of𝑎 and the value of the conditional expression
are related. Finally, the suspiciousness score of the conditional
expression at line 4 is assumed to be the maximum value of 𝑃 (𝑆4 =
0) and 𝑃 (𝑆7.1 = 0).

The second challenge is scalability. This challenge comes from
two aspects: (1) a project may contain many tests, and modeling

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, Lu Zhang

1 public class Unexecuted {
2 public static int foo(int a) {
3 int b = 0;
4 if (a < 10) // buggy , should be a<=10
5 a += 2;
6 else
7 b++;
8 return a;
9 }
10
11 @Test
12 void pass() {
13 assertEquals (11, foo(9));
14 }
15
16 @Test
17 void fail() {
18 assertEquals (12, foo (10));
19 }
20 }

Figure 2: An Example of Unexecuted Branch

all of them may lead to a very large model, while many tests are
unrelated to the current fault; (2) a test execution trace may be
extremely long due to the existence of loops, while such long loops
provide repeated information and modeling such a trace alone leads
to a very large model. To address the first issue, we introduce a
two-phase instrumentation, and use a coarse-grained instrumenta-
tion to filter out tests unrelated to the failing ones. To address the
second issue, we introduce a loop compression algorithm to select
typical iterations such that all control/data dependencies between
statements and variables within any iteration are covered by at
least one selected iteration. In this way, we model the main effects
of the loop execution with a small number of iterations. We also
introduce a compression method to compress the methods only
covered by the passing tests as one node. The details can be found
in Sections 4.4 and 4.6.1.

3 BACKGROUND
Before introducing our approach, we describe background informa-
tion about factor graph [16], which our probability model is based
on.

A factor graph is a bipartite graph representing the factorization
of a probability distribution. The two parts of vertices are node
vertices and factor vertices. Given a factor graph 𝐺 = (𝑋, 𝐹, 𝐸)
consists of a node vertex set𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, a factor vertex set
𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑚} and an edge set 𝐸. Each node 𝑥𝑖 ∈ 𝑋 represents
a random variable in the distribution. Each factor 𝑓𝑗 ∈ 𝐹 represents
amultivariate function, mapping from some of the random variables
to a real value representing the relative likelihood of the event. If
there is an edge from 𝑥𝑖 to 𝑓𝑗 , 𝑥𝑖 is an input variable of 𝑓𝑗 . Let
𝑆 𝑗 ⊆ 𝑋 be the set of the input variables of 𝑓𝑗 . The production of
all factors represents the probabilistic weight. Therefore, the joint
probability distribution can be defined as

𝑝 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =
∏𝑚

𝑗=1 𝑓𝑗 (𝑆 𝑗)∑
𝑥1,𝑥2,...,𝑥𝑛

∏𝑚
𝑗=1 𝑓𝑗 (𝑆 𝑗)

Notice that the denominator representing the total probabilistic
weight from the entire sample space is used to normalize the prob-
ability.

Figure 3: Approach Workflow.

Multiple algorithms exist to infer the marginal distribution of
the random variables. For example, loopy belief propagation [25] is
an efficient approximating algorithm to infer the marginal distribu-
tions.

4 OUR APPROACH
In this section, we first describe our approach in detail and then
describe various optimizations we applied to scale it. Figure 3 shows
the workflow of our approach. First, our approach instruments
the subject program to generate execution traces of the test cases.
Then, our approach applies static analysis on the whole program
and dynamic analysis on the execution traces to extract control
dependency and data dependency respectively. Next, our approach
builds a probabilistic graphical model (i.e., a factor graph) based on
this information that describes how the correctness of each program
element affects each other. Finally, our approach adds results of the
test cases as evidence to the model and performs marginal inference
conditioning on them. Our approach ranks the statements based
on their marginal probabilities and outputs this ranking.

4.1 Instrumentation
Our approach instruments test runs at the bytecode level and col-
lects traces that are further used in dependency analysis. Concretely,
our trace includes a sequence of instruction executions, where each
instruction execution includes the ID of the instruction, the type of
the instruction, the values read/written by this instruction, and the
change to the program counter. To facilitate understanding, we will
describe our approach at the Java source code level, and use “state-
ment” and “instruction” interchangeably. Yet the readers should be
aware that the collected traces are at the level of bytecode.

4.2 Dependency Analysis
Modeling dynamic data dependency can easily be done by utilizing
the information from collected traces. For any read operation on
a memory location, the most recent write and its corresponding
instruction can be resolved by sequentially iterating instructions in
the tracewhile keeping track of all memorywrites. This information
is used in building the probabilistic graph described in Section 4.3.

Besides data dependencies, we also need to consider control
dependencies to precisely model how errors are introduced and
propagated. Unlike modeling data dependencies, we need to con-
sider information from the whole program rather than only from

Fault Localization via Efficient Probabilistic Modeling of Program Semantics ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 public int foo (...) {
2 if (condition)
3 return a;
4 ...
5 return b;
6 }

Figure 4: Example Program Demonstrating Control Depen-
dencies.

traces. To decide whether a branching statement controls another
statement in execution, one needs to investigate whether the state-
ment would still be executed if the branching statement turns to a
different branch other than the one taken in the execution. This can
only be achieved with the information of program fragments en-
closed in the unexecuted branch. Consider the program in Figure 4.
Suppose in a concrete run, the program takes the false branch, and
thus the trace is if(false) ... return b. The trace does not include the
information of the true branch and it remains unclear whether line
5 would be executed if the true branch was taken. However, by
investigating the program, we know that the dependency holds as
the method will return at line 3 if the branching statement takes
the true branch. As a result, the branching statement controls all
other statements in the method, as its branching status affects all
other statements being executed or not.

To precisely model control dependencies, we apply a static anal-
ysis [8] that calculates dominance relations [3] between statements
on control flow graphs. Intuitively, a control statement controls all
its subsequent statements in its control flow graph until it reaches
statements that post-dominate it.

4.3 Building the Probabilistic Graph
After dependency analysis, our approach builds a factor graph
(described in Section 3) that models how errors are introduced
and propagated based on dependency information and program
semantics. In the graph, a node denotes a random variable that
represents the correctness of a statement or a run-time variable’s
value; edges are added based on control and data dependencies;
factors describe how likely errors can be introduced or propagated
in a certain way. An example factor graph is shown in Figure 5. We
next describe each component in detail.

Nodes. A node is a Bernoulli random variable that represents the
correctness of a run-time value or a statement. The former is called
a value-node, and the latter is called a statement-node.

Our approach adds a value-node to the graphwhenever an assign-
ment occurs on a variable or a field in the trace. Thus a variable/field
corresponds to multiple nodes in the graph, each of which corre-
sponds to a value it holds during executions. As for statements, we
create only one statement-node for each statement in the program
as a statement’s correctness should be consistent among all test
executions. Thus, sub-graphs constructed from different test cases
are connected through statement-nodes.

Edges. Edges are added based on the control and data depen-
dencies. In a factor graph, nodes are not directly connected, and
an edge always connects a node to a factor. There are two types
of factors in our model: semantics-factors and evidence-factors.

Figure 5: Generated factor graph for Figure 1.

Semantics-factors and evidence-factors add program semantics and
observation evidence to our model respectively, which we will
discuss later.

For a node whose correctness is known (e.g. from the test oracle),
we introduce an evidence-edge to link it with a corresponding
evidence-factor.

For each statement, we introduce a semantics-factor and cor-
responding edges to describe how errors can be introduced by
it or propagated through it. Concretely, the following nodes are
connected to the semantics-factor:

(1) The statement-node itself.
(2) A value-node that represents the value that is written by the

statement.
(3) Value-nodes that represent values that are read in the state-

ment.
(4) Value-nodes that represent the condition values that control

the current statement.
The corresponding edges that connect to these nodes are called:
statement-edge, define-edge, use-edge, and control-edge, respec-
tively. These edges together link a value-node denoting the result
of the statement ((2)) with its possible immediate sources of errors
((1)(3)(4)).

Factors. As described in Section 3, each factor represents a mul-
tivariate function. In our model, the function of a semantics-factor
evaluates how likely a value can become erroneous after executing
a statement. The main idea is that if any of the following:

(1) The current statement
(2) All values it uses
(3) All condition values that controls it

is erroneous, then there is a possibility that the value it defines is
erroneous. We refer to all the three former elements as “sources”,
and the last one as “result” in the rest of this section.

Table 1 shows the function of semantics-factors. The column
“Sources” indicates whether all the sources are correct, while the

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, Lu Zhang

Table 1: The truth table of a semantics-factor.

Sources Result Factor Value
Insensitive Sensitive

1 1 1 1
1 0 0 0
0 1 0.5 0.01
0 0 0.5 0.99

column “Result” indicates whether the result is correct. The “Fac-
tor Value” column indicates the likelihood of different correctness
states of sources and the result. Note the factor values cannot be
directly interpreted as probabilities, but as a way to compare the
likelihood between different states of sources and the result. Further,
we observe that statements whose operators are “<”, “>”, “==”, “!=”
or “%” are less sensitive to the correctness of the sources than other
operators (e.g. “+” , “×”). For example, when 𝑥 contains an incorrect
value, there is a higher chance for 𝑥 > 0 to produce a correct value
than 𝑥 + 1, as the prior has a much smaller value domain {True,
False}. Following this intuition, we divide the “Factor” column into
“Insensitive” and “Sensitive” for these two types of statements.

We now explain the meaning of each row in the table. The first
two rows mean that when all the sources are correct, the statement
should always produce a correct result. The last two rows mean
that when the sources are not fully correct, there is still a chance for
the result to be correct. For insensitive statements, such a chance
is moderate (0.5), which is the same as the chance for the result to
be incorrect. While for sensitive statements, such a chance is very
low (0.01), and the chance for the result to be incorrect is very high
(0.99). We refer to parameters 0.5, 0.01, and 0.99 as moderate, very
low, and very high factor values in Section 5, and the impact of
different parameter values is further discussed in RQ3.

Finally, we can infer the correctness of some program elements
from test inputs and test assertions. Most notably, we have the
followings:

(1) Test inputs should be correct.
(2) The Boolean value produced by passing assertions should

be correct.
(3) The Boolean value produced by failing assertions should be

incorrect.
We add these information to our model as follows: for each evidence
(𝑥 = 𝑒), an evidence-factor linking to the corresponding program
element is added to the graph, with the factor function defined as
follows: 𝑓 (𝑥 = 𝑒) = 1 and 𝑓 (𝑥 ≠ 𝑒) = 0.

4.4 Capturing Semantic Effect of Unexecuted
Statements

So far, we have introduced how to model the data dependencies
and control dependencies between statements that are executed
in test cases. However, this information is not enough to locate
faults precisely because an error can be introduced if necessary
statements are not executed. Consider the example in Figure 2 again.
The assertion on line 18 fails because the statement on line 5 is
not executed, which is further caused by the incorrect branching

statement on line 4. However, one cannot capture this connection by
only reasoning about control dependencies and data dependencies
recovered from the trace.

To model this information precisely, one needs to also reason
about data dependencies and control dependencies between ex-
ecuted code and unexecuted code. However, a full-fledged static
analysis that considers all possible behaviors of the program would
be too expensive. Instead, we take a lightweight approach that ab-
stracts the effect of unexecuted code by transforming the original
program. Briefly, for a condition 𝑐 , let S be the set of all variables
defined by the statements controlled by 𝑐 . For each variable 𝑣 in 𝑆 ,
the transformation adds a complementary statement 𝑣 = 𝑣 at the
end of each branch. The complementary statement is regarded as
the branching statement in the result, as the incorrectness of 𝑣 = 𝑣

means the program has taken the wrong branch. For simplicity, we
only consider variables on the stack in our implementation. Such a
transformation does not change the program’s semantics but allows
our control dependency analysis and data dependency analysis to
abstract the effect of unexecuted code automatically.

4.5 Getting the Final Result
The factor graph that is built using the above steps defines a joint
distribution of the correctness of all program elements. We now
can perform a marginal inference on the graph, which produces
the probability of a program element being incorrect. This in turn
is used to produce the final ranking of fault localization. We im-
plement the inference using an efficient iterative algorithm called
loopy belief propagation [25]. Finally, we perform dynamic slicing
to filter elements irrelevant to the fault.

4.6 Scaling Our Approach
Instrumenting program runs can produce enormous execution
traces. These can lead to gigantic factor graphs which cannot even
be stored in physical memory, let alone performing inference. To
address this challenge, we apply several techniques to reduce the
trace sizes within and across test cases.

4.6.1 Reducing Sizes of Traces. We apply two techniques to re-
duce the size of a given trace: compressing loops, and selectively
instrumenting methods.

As pointed out in Section 2, heavy loops may lead to long traces,
resulting in a very large model. In addition, it also contains repeated
code patterns, which provides very little information to our proba-
bilistic model. To reduce the trace caused by the loops, we would
like to select a key subsequence of the trace containing some of
the iterations. Here we define a subsequence as a key subsequence
if all control/data dependencies between statements and variables
within any iteration are covered by at least an iteration in the sub-
sequence. In this way, we can model the main effect of the loop
while significantly reducing its size.

To select the key subsequence, we check each pair of adjacent
iterations. If the sequences of statements executed in the two it-
erations are identical, we only keep the first iteration in the final
trace. As for nested loops, we first compress the inner loops and
then compress the outer loops. As a result, for any sequence of
statements executed, at least an iteration is kept to represent the

Fault Localization via Efficient Probabilistic Modeling of Program Semantics ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

sequence. Accordingly, all control/data dependencies are kept with
respect to the key subsequence.

Second, we observe that parts of the passing traces can be sum-
marized into atomic statements. The key insight is that the incorrect
statements that are responsible for the failure must be covered by
at least one of the failing test cases. As a result, for a sequence of
statements that are only covered in passing test cases, we only care
about the dependencies between them and other statements but not
the dependencies between statements inside the sequence, because
none of them can be the faulty statement our approach is trying to
locate. This sequence in turn can be treated as one atomic statement.
We perform such compression at method levels as statements inside
them usually have limited dependencies with statements outside
them. For example, when a method does not access the heap, it can
be summarized as a statement that calculates its return value based
on the parameters. Concretely, we also consider field access of the
callee object when the method is non-static, as setters and getters
are very common practices in Java that involve field access.

4.6.2 Selecting Test Cases. While our techniques are effective in
reducing trace sizes, some of the traces can be still too large to
be included. Therefore, we introduce several techniques to select
a subset of test cases whose information will be included in our
modeling.

First, we observe that while all failing test cases usually carry
useful information about faults, not all passing test cases are useful.
In particular, if a passing test has a completely different coverage
compared to failing tests, it carries no information for localization
as it does not cover any suspicious location. Similarly, if a passing
test case covers a very different set of methods compared with the
failing test cases, it is unlikely it is useful in locating the faults. To
realize this idea, we first run a coarse-grained instrumentation to
get method-level coverage. The tests are ranked by the number
of commonly covered methods with failing tests. Except for the
top 50 tests, the remaining tests are excluded from fine-grained
instrumentation, which is often costly because of heavy I/O.

Second, due to practical concerns, we exclude very long traces
and some traces when the probabilistic graph becomes too large.
To handle the former case, we set a hard limit on the size of any
given trace and discard traces whose size has reached this limit. To
handle the second case, we set a limit on the size of the probabilistic
graph under construction. More concretely, when constructing a
graph, we consider all failing test cases. As for passing test cases,
we sort their traces by the size in ascending order and add their
information one-by-one to the graph until the graph size reaches
the limit.

5 EVALUATION
5.1 Research Questions

• RQ1: Effectiveness of SmartFL. How effective is SmartFL
compared to other techniques?

• RQ2: Efficiency of SmartFL.What is the time cost of SmartFL
compared to other techniques?

• RQ3: Influence of Different Factor Values. To what ex-
tent do moderate, very low, and very high factor values in
both sensitive and insensitive statements affect the results?

Table 2: Projects from Defects4j dataset, version 1.0.1.

Project Faults LoC

Apache CommonsMath 106 103.9k
Apache Commons Lang 64 49.9k

Joda-Time 26 105.2k
JFreeChart 26 132.2k

Total 222 91.7k
’Faults’ denotes the number of defective versions of the project, ’LoC’
denotes the average lines of code of each project. Bold denotes the

abbreviation for the project.

• RQ4: Effectiveness of Different Components. What is
the contribution of each component to the overall effective-
ness?

• RQ5: Combining with other Techniques. Can SmartFL
improve the effectiveness of combination methods?

5.2 Benchmark and Measurements
We take the projects from Defects4j [15] version 1.0 as our bench-
mark, so as to compare with the results of other approaches in
existing studies [26, 38]. We exclude the Closure project because
it contains many advanced language features as a compiler imple-
mentation, which our current implementation does not support.
We also exclude bugs “Lang-2” and “Time-21” because they are no
longer reproducible due to deprecation. As a result, our dataset
includes four projects, 222 faults, as shown in Table 2.

Our evaluating metric is top-k where 𝑘 is 1, 3, 5, or 10. Top-k
counts the number of faults that are successfully located within the
top k entries of the ranked suspicious candidate list. An existing
study [24] suggested that developers would only check a few entries
in the ranked list, which is consistent with the top-k metric. We
follow the measurement rules provided in a previous study [38].

Regarding the granularity of fault localization, we choose both
statement-level and method-level granularity, the two most fre-
quently used levels. As for method-level evaluation, we calculate
the suspicious score of a method as the maximum suspicious score
of its statements, e.g. the method’s ranking is equal to its highest-
ranking statement.

5.3 Experiment Setup
5.3.1 Implementation. We have implemented our approach for
Java using the instrumentation framework Javassist1. The instru-
mentation causes JVM crashes on some of the subjects in our ex-
periments, and we deem that our approach fails to localize the fault
for these subjects.

As described in Section 4.6, we select up to 50 test methods for
tracing and limit the maximum number of lines to be less than 1.2
million for each trace. Upon building the graph, we limit the maxi-
mum number of lines to be less than 1 million for all compressed
traces. Please note that this selection only applies to our approach
but not any other baseline approach. Our implementation may still

1https://github.com/jboss-javassist/javassist

https://github.com/jboss-javassist/javassist

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, Lu Zhang

run out of memory after the selection on some subjects, and we
treat these cases as failures of our approach to localize the fault.

Our current implementation does not support some advanced
Java features such as reflection and may miss data and control
dependencies introduced by these features. This incomplete mod-
eling may reduce the performance, yet our approach still shows
significant advantages over existing approaches despite this imple-
mentation issue.

5.3.2 RQ1: Effectiveness of SmartFL. To test the effectiveness of
SmartFL, we compare the result of SmartFL with SBFL, represent-
ing coverage-based approaches, and MBFL, representing the ap-
proaches modeling semantics. We do not compare with angelic
debugging because there is no implementation scalable to large
programs as far as we know. According to existing research [38],
we select Ochiai [2] and DStar [33] from SBFL, Metallaxis [23] and
MUSE [21] from MBFL for comparison, and the performance data
of these approaches are obtained from an existing study [38].

5.3.3 RQ2: Efficiency of SmartFL. We compare the run-time cost
of SmartFL with the four baseline approaches described in RQ1.
As Figure 3 shows, SmartFL consists of two steps: (a) tracing and
(b) modeling (including probabilistic inference). In the tracing step,
tracing each test can be run in parallel except project Time because
the tests of Time do not support parallel execution. As a result, we
run tests in parallel with 16 threads for the other three projects and
run tests with a single thread for Time. In the modeling step, we
run modeling and probabilistic inference in a single thread.

5.3.4 RQ3: Influence of Different Factor Values. We assign 0.5-0.5 to
the factor values of insensitive operations and 0.01-0.99 to those of
sensitive operations in our default approach. In this RQ we evaluate
the performance of other possible values. We evaluate 9 pairs of
factor values for insensitive operations: 0.1− 0.9, 0.2− 0.8, . . . , 0.9−
0.1, and 4 pairs of those for sensitive operations: 0.001−0.999, 0.01−
0.99, 0.05 − 0.95, 0.1 − 0.9. This experiment is taken only on project
Lang rather than the whole dataset to save time.

5.3.5 RQ4: Effectiveness of Different Components . We design two
ablation studies to evaluate the effectiveness of two components. In
the first study, we discard the modeling of unexecuted statements
described in Section 4.4 and compare the results on all 222 cases.
In the second study, we discard loop compression described in
Section 4.6.1 and compare the results and time cost on the modeling
step with the original version, on the cases that do not trigger the
limit of total trace lines when discarding loop compression. The
selection ensures all added traces are identical in both versions.

5.3.6 RQ5: Combining with other Techniques. CombineFL [38] is
the state-of-the-art fault localization technique on statement-level.
We combine SmartFL with other methods under the framework of
CombineFL on all 222 cases. CombineFL requires a suspiciousness
score for each standalone technique to perform learning. In SmartFL,
the suspiciousness score of an 𝑖𝑡ℎ − 𝑟𝑎𝑛𝑘𝑒𝑑 statement is defined as
follow:

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 (𝑖) = 𝑛 − 𝑖 + 1
𝑛

Where 𝑛 is the number of all suspicious candidates.

Table 3: Statement-level Performance

Project Technique Top-1 Top-3 Top-5 Top-10

Total

Ochiai 11(5%) 64(29%) 86(39%) 118(53%)
DStar 12(5%) 65(29%) 86(39%) 117(53%)

Metallaxis 21(9%) 69(31%) 89(40%) 111(50%)
MUSE 17(8%) 35(15%) 45(20%) 50(23%)
SmartFL 47(21%) 80(36%) 97(44%) 118(53%)

Table 4: Sign Test Result

Method Positive Negative P-value

vs. Ochiai 87 58 0.01974
vs. DStar 88 59 0.02061

vs. Metallaxis 80 64 0.2112
vs. Muse 100 36 3.72e-08

Table 5: Method-level Performance

Project Technique Top-1 Top-3 Top-5 Top-10

Total

Ochiai 73(33%) 138(62%) 156(70%) 176(79%)
DStar 75(34%) 140(63%) 155(70%) 177(80%)

Metallaxis 70(31%) 129(58%) 149(67%) 166(75%)
MUSE 44(20%) 71(32%) 83(37%) 91(41%)
SmartFL 96(43%) 136(61%) 155(70%) 176(79%)

5.4 Experiment Results
5.4.1 RQ1: Effectiveness of SmartFL. Table 3 shows the numbers
and percentages of faults localized by different approaches at statement-
level. Here, we describe a fault is successfully localized by an ap-
proach if the actual fault position can be found in the top k program
elements returned by the approach. We display the results with
different values of k in the top-k metric. The best results under each
category are in bold fonts. On all the 222 faults, SmartFL performs
best among all values of k. At top-1, 3, and 5, SmartFL improves
114%, 16%, and 9% over the second-best approach, respectively. At
top-10, SmartFL has the same performance as Ochiai.

We also perform a sign test on each pair of techniques consider-
ing faults where at least one technique has a top-10 result on it, and
the result is shown in Table 4. We confine the test to these faults
because a difference between rank 100 and 1000 would not make
a great difference in actual use cases. The result implies that our
method significantly outperforms Ochiai, DStar, and Muse, while
still having more positive than negative cases compared with Metal-
laxis. Still, the negative cases in the sign test show that our method
could be complementary to others, which is further discussed in
RQ5.

Table 5 shows the performance of each approach at method level.
SmartFL performs better than Metallaxis and MUSE using all top-k
metrics. SmartFL has an advantage over Ochiai and Dstar at top-1
and roughly the same effect as they have at top-3,5 and 10.

Fault Localization via Efficient Probabilistic Modeling of Program Semantics ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 6: Average Time Consumption of each Technique (in
seconds, to 2 digits of precision)

Technique Average Lang Math Chart Time CPU

Ochiai 64 26 86 44 85

2.40GHzDStar 64 26 86 44 85
Metallaxis 3500 270 3000 5400 12000
MUSE 3500 270 3000 5400 12000

SmartFL 210 51 140 280 830 2.10GHz

Table 7: DifferentModerate Factor Values for Insensitive Op-
erations

Value Total Top-1 Top-3 Top-5 Top-10

0.1-0.9 133 19(30%) 32(50%) 37(58%) 45(70%)

0.2-0.8 138 21(33%) 35(55%) 39(61%) 43(67%)

0.3-0.7 139 21(33%) 35(55%) 39(61%) 44(69%)

0.4-0.6 141 21(33%) 35(55%) 39(61%) 46(72%)

0.5-0.5 140 21(33%) 34(53%) 39(61%) 46(72%)

0.6-0.4 141 21(33%) 34(53%) 39(61%) 47(73%)

0.7-0.3 142 22(34%) 34(53%) 38(59%) 48(75%)

0.8-0.2 139 22(33%) 32(50%) 39(61%) 46(72%)

0.9-0.1 138 22(33%) 32(50%) 38(59%) 46(72%)

SmartFL focuses on statement-level fault localization and SmartFL
performs better than all other techniques on statement-level. At
method-level, SmartFL still significantly outperforms others in
terms of Top-1 accuracy. The above results demonstrate the ef-
fectiveness of SmartFL.

5.4.2 Efficiency of SmartFL. Table 6 shows the time costs of all
techniques. The performance data of the baselines are obtained
from an existing study by Zou et al. [38]. The execution time is not
directly comparable because the two experiments are on different
hardware platforms. However, we cannot reproduce the experi-
ments by Zou et al. [38] because the implementation only supports
an old version of Defects4J, which is no longer available. Neverthe-
less, the hardware platforms for the two sets of experiments have
CPUs with similar lock speed2, and thus significant time difference
still matters.

As mentioned in Section 5.3, we run tests with a single thread
on benchmark Time so the time cost for Time is much longer than
those of other projects. The average time of SmartFL is 210 seconds,
which is an order of magnitude smaller than MBFL methods. The
result shows SmartFL models the semantics of the program in an
efficient way.

2Intel Xeon E5-2640 v4@2.40GHz-12 cores ([38]) vs. Intel Xeon Gold 6230@2.10GHz-20
cores (ours)

Table 8: Different Very low/Very high Factor Values for Sen-
sitive Operations

Value Total Top-1 Top-3 Top-5 Top-10

0.001-0.999 139 22(34%) 34(53%) 37(58%) 46(72%)

0.01-0.99 140 21(33%) 34(53%) 39(61%) 46(72%)

0.05-0.95 144 21(33%) 35(55%) 41(64%) 47(73%)

0.1-0.9 144 21(33%) 33(52%) 42(66%) 48(75%)

Table 9: Effect of Modeling Unexecuted Statements.

Technique Top-1 Top-3 Top-5 Top-10

Origin 47 80 97 118
w/o Unexecuted 48 80 95 118

Table 10: Effect of Loop Compression (on 93 selected cases).

Technique Time Top-1 Top-3 Top-5 Top-10

Origin 30s 33 50 57 65
w/o Compression 49s 31 49 56 64

5.4.3 RQ3: Influence of Different Factor Values. We re-run our ap-
proach on project Lang with different factor parameters (moderate,
very low, and very high) for both sensitive and insensitive state-
ments. The result is shown in Table 7 and Table 8.

In the first column, the former number denotes the factor value
of getting the correct result when receiving wrong sources and the
latter number denotes the factor value of getting the wrong result.
We can see that the choice of parameters has only a small impact
on the results. This suggests that our model is robust with respect
to different parameters, and could still work without fine-tuning.

5.4.4 RQ4: Effectiveness of Different Components. We perform sev-
eral ablation studies to evaluate the effect of different components
of our approach.

Table 9 shows the effect of modeling unexecuted statements.
Without considering the effect of unexecuted statements, the top-1
and top-5 results receive a small change. In general, the effect of
modeling unexecuted statements is not significant. However, we
notice that the results on 63 out of 222 cases changed, and particu-
larly, “Lang 53” and “Math 79” failed when unexecuted statements
are not modeled. The two newly introduced failures suggest some
Defects4J cases can be successfully localized by SmartFL only with
the help of modeling unexecuted statements.

Following the rules described in Section 5.3.5, we select 93 cases
that do not exceed the limit of total trace lines in the benchmark.
Table 10 shows that the default approach performs slightly better,
which suggests removing redundant sequences from traces could
effectively reduce execution time while preserving effectiveness.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, Lu Zhang

Table 11: Integrating SmartFL with CombineFL

Technique Top-1 Top-3 Top-5 Top-10

CombineFL Level-2 32(14%) 93(42%) 116(52%) 144(64%)

SmartFL with Level-2 58(26%) 102(47%) 124(56%) 144(64%)

CombineFL Level-4 45(20%) 95(43%) 121(55%) 143(64%)

SmartFL with Level-4 53(24%) 97(44%) 127(57%) 149(67%)

5.4.5 RQ5: Combining with other Techniques. CombineFL is a tech-
nique for combining different fault localization methods. Com-
bineFL has four levels, each consists of standalone techniques with
time cost under a certain level. Level-2 contains only lightweight
methods that require minutes to run, including history-based, stack
trace-based, IR-based, slicing, and SBFL methods. Compared with
level-2, level-4 further includes predicates switching and MBFL,
which usually requires more than an hour to localize the faults.

By excluding heavy-weight approaches and including SmartFL
in CombineFL, the time cost is greatly reduced as SmartFL only
requires minutes to localize one fault. We also combine SmartFL
with Level-4 CombineFL to show our full potential. The result
is shown in Table 11. The top-1 accuracy raises to 58 (26%) by
replacing MBFL methods with SmartFL, while combining with
Level-4 results in better Top-10 accuracy. We notice that combining
more techniques to SmartFLwith CombineFL Level-2 may drop Top-
1 accuracy. The reason could be that SmartFL’s result is correlated
to MBFL’s result but still has a difference. The result also shows a
new learning method may better combine SmartFL and MBFL, and
calls for further research.

6 RELATEDWORK
Fault localization has been intensively studied during the past
decades. Here we leave a full summary of fault localization to re-
spectively surveys [4, 28, 34] and empirical studies [38], and discuss
only the most related work.

6.1 Probabilistic Approaches
Fault localization is inherently a probabilistic analysis process, and
many existing approaches resort to probabilistic modeling. Similar
to our approach, these modeling approaches also treat the sample
space as all possible faults or all possible fault locations and try to
identify the element that has the highest conditional probability
to be faulty based on the observed test results. Different from our
approach that extract the probabilities from the semantics of the
program, most probabilistic approaches either consider only the
coverage and do not model the semantics of the program [10, 27],
or learn the probabilities from test executions [5, 9].

The only exception is Xu et al. [35]’s approach. This approach
solves a different problem, namely interactive fault localization: how
to support the developer when he faces one failing test. Similar to
our approach, their approach also uses probabilistic modeling and
introduces Bernoulli probabilistic variables to represent whether
the runtime values and statements are faulty or not. Our approach

is also inspired by their work, but there are multiple fundamen-
tal differences: (1) To easily integrate the developers’ feedback,
their approach uses two-level reasoning, first calculating the faulty
probabilities of the runtime values and then calculating the faulty
probabilities of the statement. As a result, different test executions
are isolated and thus their approach cannot support fault local-
ization from multiple tests. (2) Their approach does not consider
the effect of the unexecuted branches. (3) Their approach does not
select nor compress test executions.

Difference (1) is essential in our problem, as the passing tests
provide critical information for fault localization and cannot be
ignored. In the example in 1, without the passing tests, we cannot
localize correctly. Differences (2) and (3) are evaluated in RQ4, which
indicates that removing them leads to a performance drop.

6.2 Spectrum-based Fault Localization
Asmentioned before, the main type of coverage-based fault localiza-
tion is SBFL approaches, which calculates the suspicious scores of
program elements based on the numbers of pass/fail tests covering
the element using different formulas [1, 12, 22].

As mentioned, coverage is only one of the four conditions for a
test to fail on a fault, and thus the coverage-based approaches do
not consider the latter three conditions. To overcome this problem,
some existing approaches combine SBFL with program slicing [14,
20, 29], in the sense that only the statements in the slice can produce
and propagate the faults. For example, Mao et al. [20] proposed
SSFL (slice-based statistical fault localization). By calculating the
suspiciousness score on an approximate dynamic backward slice,
SSFL significantly boosts all 16 formulas of SBFL. However, slicing
only reveals the possibility but not the probability that a program
element produces or propagates fault, and thus is a very inaccurate
modeling of semantics.

6.3 Approaches Modeling Semantics
As we have carefully discussed in Sections 1 and 2, MBFL [21, 23]
and angelic debugging [6, 7] are the two main families that model
semantics for fault localization, but both have scalability issues
due to their precise modeling of the semantics. Our evaluation also
shows that our approach is about 10X faster than MBFL and is
much more effective.

6.4 Combination Approaches
Multiple approaches try to combine existing approaches or dif-
ferent information sources. Xuan and Monperrus [36] proposed a
learning-to-rank approach to integrate the suspiciousness scores of
25 existing SBFL formulae. Zou et al. [38] further extended this ap-
proach to integrate the suspiciousness scores produced by different
families of fault localization families. Our approach could also be
integrated using these approaches. As our evaluation shows, our ap-
proach could significantly boost the performance of the combined
approaches.

Other approaches try to use machine learning techniques to com-
bine different information sources. For example, Sohn and Yoo [31]
use the learning-to-rank technique to combine the suspiciousness
scores of existing SBFL formulae, code complexity metrics, and
code history metrics; Li et al. [18] use neural network to combine

Fault Localization via Efficient Probabilistic Modeling of Program Semantics ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

suspiciousness scores of SBFL and MBFL, code complexity metrics,
and text similarity metrics; Küçük et al. [17] use causal inference
techniques and machine learning to integrate predicate outcomes
and runtime values; Lou et al. [19] use neural network to embed
both the syntax of the program and the coverage information. How-
ever, none of these approaches are able to integrate the semantic
information, which is the focus of this paper.

7 CONCLUSION
This paper proposes a novel fault-localization method based on
probabilistic graph model. Specifically, we utilize semantic infor-
mation of different statements, while combining both dynamic and
static information into our model. We conduct an experiment on
a real-world dataset, Defects4J. Our technique is evaluated to be
complementary to existing techniques as it could further improve
state-of-the-art by combining with existing techniques.

To facilitate research, our tool and the fault localization data are
available at https://github.com/toledosakasa/SMARTFL.

ACKNOWLEDGMENTS
We acknowledge Jingjing Liang and Daming Zou for sharing their
experiment data [38]. This work is sponsored by National Natural
Science Foundation of China under Grant No. 61922003 and No.
62172017.

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2006. An evaluation

of similarity coefficients for software fault localization. In 2006 12th Pacific Rim
International Symposium on Dependable Computing (PRDC’06). IEEE, 39–46.

[2] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of
spectrum-based fault localization. In Testing: Academic and industrial conference
practice and research techniques-MUTATION (TAICPART-MUTATION 2007). IEEE,
89–98.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley. https://www.worldcat.org/oclc/12285707

[4] Mohammad Amin Alipour. 2012. Automated fault localization techniques: a
survey. Oregon State University 54, 3 (2012).

[5] George K. Baah, Andy Podgurski, and Mary Jean Harrold. 2010. The Probabilistic
Program Dependence Graph and Its Application to Fault Diagnosis. IEEE Trans.
Software Eng. 36, 4 (2010), 528–545. https://doi.org/10.1109/TSE.2009.87

[6] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. 2011. An-
gelic debugging. In Proceedings of the 33rd International Conference on Software
Engineering. 121–130.

[7] Maria Christakis, Matthias Heizmann, Muhammad Numair Mansur, Christian
Schilling, and Valentin Wüstholz. 2019. Semantic Fault Localization and Suspi-
ciousness Ranking. In Tools and Algorithms for the Construction and Analysis of
Systems - 25th International Conference, TACAS 2019, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague,
Czech Republic, April 6-11, 2019, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 11427), Tomás Vojnar and Lijun Zhang (Eds.). Springer, 226–243.
https://doi.org/10.1007/978-3-030-17462-0_13

[8] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. 2001. A simple, fast
dominance algorithm. Software Practice & Experience 4, 1-10 (2001), 1–8.

[9] Laura Dietz, Valentin Dallmeier, Andreas Zeller, and Tobias Scheffer. 2009. Lo-
calizing Bugs in Program Executions with Graphical Models. In Advances in
Neural Information Processing Systems 22: 23rd Annual Conference on Neural
Information Processing Systems 2009. Proceedings of a meeting held 7-10 Decem-
ber 2009, Vancouver, British Columbia, Canada, Yoshua Bengio, Dale Schuur-
mans, John D. Lafferty, Christopher K. I. Williams, and Aron Culotta (Eds.).
Curran Associates, Inc., 468–476. https://proceedings.neurips.cc/paper/2009/
hash/f64eac11f2cd8f0efa196f8ad173178e-Abstract.html

[10] Alberto González-Sanchez, Rui Abreu, Hans-Gerhard Groß, and Arjan J. C. van
Gemund. 2011. Spectrum-Based Sequential Diagnosis. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11, 2011, Wolfram Burgard and Dan Roth (Eds.). AAAI
Press. http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3565

[11] Jiajun Jiang, Ran Wang, Yingfei Xiong, Xiangping Chen, and Lu Zhang. 2019.
Combining spectrum-based fault localization and statistical debugging: an empir-
ical study. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 502–514.

[12] James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the taran-
tula automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. 273–282.

[13] James A Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002. IEEE, 467–477.

[14] Xiaolin Ju, Shujuan Jiang, Xiang Chen, Xingya Wang, Yanmei Zhang, and Heling
Cao. 2014. HSFal: Effective fault localization using hybrid spectrum of full slices
and execution slices. Journal of Systems and Software 90 (2014), 3–17.

[15] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.

[16] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. 2001. Factor graphs and
the sum-product algorithm. IEEE Transactions on information theory 47, 2 (2001),
498–519.

[17] Yigit Küçük, Tim A. D. Henderson, and Andy Podgurski. 2021. Improving Fault
Localization by Integrating Value and Predicate Based Causal Inference Tech-
niques. In 43rd IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021. IEEE, 649–660. https://doi.org/10.1109/
ICSE43902.2021.00066

[18] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Møller
(Eds.). ACM, 169–180. https://doi.org/10.1145/3293882.3330574

[19] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and
Lingming Zhang. 2021. Boosting coverage-based fault localization via graph-
based representation learning. In ESEC/FSE ’21: 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios Gousios, Marsha
Chechik, and Massimiliano Di Penta (Eds.). ACM, 664–676. https://doi.org/10.
1145/3468264.3468580

[20] Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and Chengsong Wang. 2014.
Slice-based statistical fault localization. Journal of Systems and Software 89 (2014),
51–62.

[21] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
mutants: Mutating faulty programs for fault localization. In 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation. IEEE,
153–162.

[22] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-
based software diagnosis. ACM Transactions on software engineering and method-
ology (TOSEM) 20, 3 (2011), 1–32.

[23] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Software Testing, Verification and Reliability 25, 5-7 (2015), 605–628.

[24] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the 2011 international symposium
on software testing and analysis. 199–209.

[25] Judea Pearl. 1982. Reverend Bayes on Inference Engines: A Distributed Hierarchi-
cal Approach. In Proceedings of the National Conference on Artificial Intelligence,
Pittsburgh, PA, USA, August 18-20, 1982, David L. Waltz (Ed.). AAAI Press, 133–136.
http://www.aaai.org/Library/AAAI/1982/aaai82-032.php

[26] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. 2016. Evaluating & improving fault
localization techniques. University of Washington Department of Computer Science
and Engineering, Seattle, WA, USA, Tech. Rep. UW-CSE-16-08-03 (2016), 27.

[27] Alexandre Perez, Rui Abreu, and Arie van Deursen. 2021. A Theoretical and
Empirical Analysis of Program Spectra Diagnosability. IEEE Trans. Software Eng.
47, 2 (2021), 412–431. https://doi.org/10.1109/TSE.2019.2895640

[28] Alexandre Perez, Rui Abreu, and Eric Wong. 2014. A survey on fault localization
techniques. (2014).

[29] Sofia Reis, Rui Abreu, and Marcelo d’Amorim. 2019. Demystifying the Com-
bination of Dynamic Slicing and Spectrum-based Fault Localization.. In IJCAI.
4760–4766.

[30] David Schuler and Andreas Zeller. 2011. Assessing Oracle Quality with Checked
Coverage. In Fourth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2011, Berlin, Germany, March 21-25, 2011. IEEE Computer
Society, 90–99. https://doi.org/10.1109/ICST.2011.32

[31] Jeongju Sohn and Shin Yoo. 2017. FLUCCS: using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Santa Barbara, CA, USA, July 10 -
14, 2017, Tevfik Bultan and Koushik Sen (Eds.). ACM, 273–283. https://doi.org/
10.1145/3092703.3092717

[32] Jeffrey M. Voas. 1992. PIE: A dynamic failure-based technique. IEEE Transactions
on software Engineering 18, 8 (1992), 717.

https://github.com/toledosakasa/SMARTFL
https://www.worldcat.org/oclc/12285707
https://doi.org/10.1109/TSE.2009.87
https://doi.org/10.1007/978-3-030-17462-0_13
https://proceedings.neurips.cc/paper/2009/hash/f64eac11f2cd8f0efa196f8ad173178e-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/f64eac11f2cd8f0efa196f8ad173178e-Abstract.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3565
https://doi.org/10.1109/ICSE43902.2021.00066
https://doi.org/10.1109/ICSE43902.2021.00066
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3468264.3468580
https://doi.org/10.1145/3468264.3468580
http://www.aaai.org/Library/AAAI/1982/aaai82-032.php
https://doi.org/10.1109/TSE.2019.2895640
https://doi.org/10.1109/ICST.2011.32
https://doi.org/10.1145/3092703.3092717
https://doi.org/10.1145/3092703.3092717

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, Lu Zhang

[33] W Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2013. The DStar method
for effective software fault localization. IEEE Transactions on Reliability 63, 1
(2013), 290–308.

[34] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[35] Z. Xu, S. Ma, X. Zhang, S. Zhu, and B. Xu. 2018. Debugging with Intelligence
via Probabilistic Inference. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). 1171–1181. https://doi.org/10.1145/3180155.3180237

[36] Jifeng Xuan and Martin Monperrus. 2014. Learning to combine multiple ranking
metrics for fault localization. In Software Maintenance and Evolution (ICSME),

2014 IEEE International Conference on. IEEE, 191–200.
[37] Yucheng Zhang and Ali Mesbah. 2015. Assertions are strongly correlated with test

suite effectiveness. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September
4, 2015, Elisabetta Di Nitto, Mark Harman, and Patrick Heymans (Eds.). ACM,
214–224. https://doi.org/10.1145/2786805.2786858

[38] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang. 2021. An Empirical Study
of Fault Localization Families and Their Combinations. IEEE Transactions on
Software Engineering 47, 2 (2021), 332–347. https://doi.org/10.1109/TSE.2019.
2892102

https://doi.org/10.1145/3180155.3180237
https://doi.org/10.1145/2786805.2786858
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102

	Abstract
	1 Introduction
	2 Overview
	3 Background
	4 Our Approach
	4.1 Instrumentation
	4.2 Dependency Analysis
	4.3 Building the Probabilistic Graph
	4.4 Capturing Semantic Effect of Unexecuted Statements
	4.5 Getting the Final Result
	4.6 Scaling Our Approach

	5 Evaluation
	5.1 Research Questions
	5.2 Benchmark and Measurements
	5.3 Experiment Setup
	5.4 Experiment Results

	6 Related Work
	6.1 Probabilistic Approaches
	6.2 Spectrum-based Fault Localization
	6.3 Approaches Modeling Semantics
	6.4 Combination Approaches

	7 Conclusion
	References

